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Abstracte

5

When class is the unit of analys;s,-estimetes of

.

the dependability of class means are freéuently required.

. ’ \
Using c¢lassical test theory it is - difficult to treat this

. .problem adequately. 1In this paper, we consider the d pen-
, %“
dablllty of class means by applylng generallzablllty theory 4

to a split-plot design in which students are nested #ithin
classes. Using the split-plot design we obtain four distinct

generalizability coefficients. We then compare these

’ ¢

four coefficients with each other and with three previously
reported reliability coefficients. We find that each of
the three reliability coefficients is related\to one or .more

generalizability coefficients. However, none of the

reliability coefficients is equlvalent to the generallzablllty

.

coefficient which is, in our judgment usually the mOst

appropriate co icient for describing the dependablllty of -
. : . o’ .

<

class means.
p—
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The 'Generalizability of Class Means
. N

Introduction

. Recently, a number of researchers have given serious

'S

consideration.to the problem of estimating reliability when

‘ N

the unit of analysis is a class mean oL some othr aggregaté
score for a set of persons; Haney (1974a, L?74£)‘has reviewed
impprtant aspects of the relevant literature.

.The -study of this topiP has been motivated by the
analysis of data from several diﬁferent sources. In particular,
‘1arge sﬁaie evaluations, such as those unaértgken for Head
Start‘(see Smith & Bissell, 1970) and Follow Through (see Abt
Associates, 1974), frequently require estimates of reliabilit&

when class is the unit of analysis. Similar issues arise

, .
in the study of course evaluation questionnaires (see Kane,

Gillmort, & Crooks, 1974)-
‘L .

-

Using concepts from classical feliability theory,
Shaycroft (1962), Wiley (1970), and Thrash and Porter (1974)

have developed three different coefficients for estimating the

s

reliability of class means. The procedures‘used to develop

these three coefficients all assume that an observed score

-~

is’ the sum of a true score and an undifferentiated error

-

term. Hoyé?er, each of these procedures ma&ss different
14

specific assumptions about what“constitutes an appropriate

»

>
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4

estimAEe of the error variance. As a result, each procedure
\

glves a different estimate of the re11ab111ty of’ class means.

Since the three procedures will not, in genendl, lead to._,

|
even approximately equal estimates of the reliability

of class’'means, it.is of considerable importance to determine
\ . ' ’ .

_the appropriate coefficient for any particﬁlar application.

Within the context of qlassical reliability theory,

it is difficultsto compare the three procedures. and arrive
« ) . :
at reasonable conclusions about their relapiye merits. Rl

+

Difficulty in comparing the proposed ieliability coefficients
: [ .
exists because these coefficients .are derived from statistical

models which a;e based on different assumptions. In particular,

*

the variance attributed to error arises from different sources

in the three models. 'However, the

coefficients can be compared directly . within the context i

——

L 4 . . :
of a more comprehensive and detailed model.
- \

Brenhan (in'press), Kane et al. (1974), and Haney (1974a)

od

have. suggested that,tﬁe reliability of class means be

\approached throdéh generallzablllty theory, as explicated by
Cronbach Gleser, Nanda, and Rajaratnam (1972). Generallzablllty
_theory extends re}iabili;y theory by al}owing for a multi-

. dimensional interpretation of error which, in turn, provides

a much more systematic-and precise method for studying the

3

dependability of class means. o ¥ (\*‘

<

»
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In this paper, we consider the dependability of class

-~

means by applying generalizability theory to a split-plot

design in which students dre nested Within classes.

-

Using the.split-plot design we obtain four distinct .

N
- generalizability coefficients. We then tompare these four

generalizability coefficients with each/other and with the

~

“~three previously repprted reiiabiiity coefficients.- We find

that each of the thr%e reliability coefficients is related

to one or more generalizabiiity coefficients. However, none
Y £

"of the reliability coefficients is equivalent to the

/rgeneralizability coefficient which is; in our judgment,

N . usually the most appropriate coefficient f&r describing ,the
: ~ - . .

dependability of class means. R e

\ -
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GeneraliZzability Theory N .

For a thorough presentation of generalizability theory,

L3 o N -

see The Dependablllty of Behavioral Measurements (Cronbach

-

et al., 1972) . A briefer, introduction to many of the basic
~ ? :
ideas is found in Lindquist (1953). Here we discuss some

concepts -from generalizability’theory that relate to our

subsequent treatment of the dependability of class means.

. -

Overview . f

+

"The purpose gf baoth beneralizability theory and reliability
theorx\is to characterize the dependability, of measurements.

Classlcal rellablllty theory assumes that errors of measurement
are sampled from an undlfferentlated un1var1ate d1str1but10n.

. 1In order'to estimate the proportlon of observed score Yarlance
attributable to error, reliability theory uses correlations and
oneyyay ahaiysis of variance‘(ANQVA). Bf contrast, generaliza%

B bility theory recognizes the existence of multiple sources of

error, and allows for the use of any ANOVA deslgn 1n order to
estlmate theimagnltude_of the variance components. R
Although generalizability theory borrows its statistical
,}6de1s and research designs from ANOVA, tnere are some changes
'in termrnology and interpfétation. ANOVA.is t§picai1y used to

- ~

test the statistical significance of hypotheses; the mean’'squares

< !

#
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‘

or «estimated compongnts of ®ariance ére nof of primary intgreft.
I'n éeneraliéability theory the emphasis is reversed. The
components of variance and the coefficients.of generalizability
computed from fhesefva;iancé components are interﬁre@%d as
descripti&e’statistics; statistical significance plays no
essential role. Cronbach et al. (1972, p. 192) actuglly advise
against the use of tests of significance for the variance

+ . -
components. ) .

- Terminology . ~ T

»

~ “

In generalizability theory, any observation on some unit
. / s

.~ of analysis (e.g., school, class, or sfhdenx) is. taken from a .
- ‘ 4

larger set’ or universe of observations. Any pbservation from

~this universe can be characterized: by the conditions under which
2 . .

it is made. The-set/Ef all possible conditions of a particulaf

kind is calléd a facet. For example, when claés is the unit of

.
’
-

analysis, the conditions of observation are characterized by

an item facet and a student facet. - This terhinology is élightly

~

different from that typically used in statistics, where classes,

=
4 v

items, and students would all be referred to as dimensions. The
use of the term "facet" in generalizdbility theory serves to

H

emphasize the distinction between the unit of anaiysis which is

-

being observed and the facéts,_which indicate the cqnditions

‘ under which the observations are made.

’

L. 0

HY A ae A
. .




( ‘Generaljizability
7.

‘ ) : .o ]
v ‘ | |

» - | ’ ’
Generalizability theory also empgfsizes~the distinction- . J
. 1
|

between G studies, which examine the dependability of 50;275 <

.

measurement procedure, and D studies, which provide the data

for substantive deciéiqns. -The purpose of the G Stud§ is to

estimate components of variance, which may then be used to "
4 . !

estimate generalizability coefficients for a variefy of -

.

D studieSJ) The G stuéy and the D study may be %?e same study,
or’ they may be different studies using the same design.
Generally, however, G studies are most useful when they employ p‘

compléx designs and large sample sizes to provide stable esti~

mates of as many variance components as possible. These com~
0 N Rl

‘ ’

ponents’can then be .used to estimate generélizability coeffi~ -~

cients for various D study designs before any D study isr

] Tane

-«
T T T

implemented. - ' , o
In the discussion that follows, it will be useful to

employ some additional terminology from generélizability theory.
\ . . o

According to Cronbach et al (1972),

)
[
’ @

(f)he test’developer or other investigator who carries o&t
5 G study takes certain facets into consideration‘and, with -
réSpect’to each fécet,\éonsideré a certain range of conditions.
The observétions ehcoﬁpaSSed-by the possiblg combinations.

of conditions’ that the G study reé{esentg is called the

-

universe of admissible observations.- We iay also speak of

/- »

the universe of admibsible conditions of a certain facet.
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[

A decision maker, applying “essentially the*same

measuring technique, proposes tp'generalize to some
universe of conditions all of which he sees as.eliciting

samples of the sa@e information. We refer to that as

-

the univefse of generalization. The G study can serve

this decision!gmker only if its universe of admissibile
conditions is identibal.to or includes the proposed
universe .of generalization. Different decisian makers

. may propose difﬁerent\;;;VErses of generalization. A

G study that'defines the universe of admissible obser-

vat;ons broadly, encompassing all the likely universes

-

'6f geheralization, will be useful to various decision

makers. (p. 20) | . | .

The decision maker is generally interested in the mean

.

. . . .8
of the observations over the universe of generalization, called

the universe score. Universe scores are not directly observable

.

and are usually estimated by the mean over some sample of obser-

vations. The dependability of these estimates is reflected by

the value of a,generalizabifity coéffipient.

Coefficients of generalizabilipy'are defined as the ratio

.

. i
of the universe score variance to the expected obderved. score
. ‘ . .
variance. These coefficients are essentially intraclass
‘ ) \ M v
‘correlation ceefficients with universe score variance replacing

B

-

*//ihe true score variance of classical test theory (€ronbach,

Y

T R

4
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Ikeda, & Avner, 1964). The observed score variance ‘has
. ’ ' .
essentially the same interpretation in both formulations.

Background

Many of the ideas that:®underlie generalizapility

theory are ndt new. 1In fact, Lindquist (1953) and, to a
Lo

2

lesser extent, Hoyt (1941) %uggested procedures for calculating'

reliability that foreshadow the approach of geﬁ%gallzablllty

theory. Using a ranﬁomlzed block de51gn and basic pr1n01ples

“from reliability and analysis of variancey both leﬂqulst.and

Hoyt calculated intraclass correlation coefficients (generali-

-

. . . 3
zability coefficients) that are algebraically equivalent to
Kuder and Richardson's (1937) Formula 20 %Qg éronbaqh'sA(1951)

Coefficient o (see Brennan, in press). = ' "

-

Generalizability theory extends the work of, Hoyt and
Lindquist to multi-faceted statistical and measurement models.

In subsequent sections of this paper we concentrate upon one
4

such model, the split-plot design, as <a basis for considérihg
AY

the dependabllﬁty of class meanswes N : bk
The AEllt Plot Design as a Model for
* the Generalizability og-class Means
Split-Plot Desig_ | .

AN
In most situations, when the dependablllty offclass means

-

is under study, the design is that designated by Cr nbach et al.

(1972) as design V-B. This-design is often referred to as a-

-

>
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split- plot des1gn 1n/standard exgeﬁimehtaljaesign texts (e.g.,

.

nested w1th1n classes and crossed w1th 1tems. Thus, each’ Ciass

contalns a dlfferent set of students, but the same set of. 1tems
are administered to the studegts ‘in all c1asses: {
’ The structurq} model for this desigg‘is:‘
Fesi T MO ¥ Tg(o) B ¥ aBey * BTigie) * gogay) ¢ ()
where . o ) . ~
‘ “’é = grand mean T * Lo L
_-E; = effeet for Ls c (g,z¢l, 2, «ee , n), ’h
\ns(c;.=.effect fer s .ent s (s =1, 2, ... ’_ﬁs)
W o - W T
;& -, -pe;ted within class ¢, ‘ :
: ;%i = effect for item i (i = 1, 2,-:.. ' gi), R
, uBcI = class by item interaction, .'~~ - . )
5 'Bﬂls(:; = iter by‘person (nested wrthin class) interaction, and
: & (e —) = experimenta; eirer (g'is a replication subscript).
'follodrng Kirk (1968), the subscr;pt c referrlng to the nested.
-treatment, Cclass, is‘'placed within parentheses. To s1mplify

J . . . . . ¢
our discussion, we will assume in this, paper that the number of;
’ ’ Y N

~

students within a class, N, 'is a constant over all classes.

»

'Klfk 1968, and Wlner, 971) In thlS des1gn-students are

-3 .
oy

14 . - -

’

>
v 7;:
B

Y




.”f‘Equation 1 results in a ¢onfounding of the effects due to
v ! , N —_
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'Confqunding'%n the Split-Plot Design -
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11

Factorial Design

'

The nesting of students within classes indicated in

- -

classes and students. The implications of'this confohnding
l .
‘in the split- plot des1gn are eVident from a consideration of

*

the analogous three-way factorial design in which class%s,

Q

students, and items are all crossed-

4 .
.7 , ] '
X . =udf + 7+ am__ + B, - =

csi - M T % s 7. %Mes i . s

- - e N -

U -
+ CEREL + afi T+ e L N ;
aBCl"‘E B“E aﬁﬁr Sas ‘e_O(CSl) sl (2) /

-
- ..
-

* N .
If the factorial design were appropriate, then every student ool
. [N ‘ u;&_’;

would .appear in each and every class, and the student effect

‘could be estimated independently of the class effect.

03

The differences between the model equations for the

split-plot and factorial designs afe"attributable to the fact

that in. the factorial design (Equation 2)‘stndents are crossed

with classes, and in the split*plot design (Equation 1) U
* o e .-).’/,
students are nes@ed within classes. This nesting in the split~ EA,

plot design«results in a confoundipg of at least/two sets of - ////
effects represented in Eqdation 2.

. :
First, the student main effect is confounded with the class

©

by student interaction;.that is, Ts (c) in the split~plot design

N .
-

-
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represents the cdmbfned contributicn;cf the £€’ ent effect and
the student by class interacticn, ﬁ +..0m cs’ 1n the factorlal
design. For the sp}tt-plot de51gn, each szudé§¢ is observed

in only one class; thus, there is no waydtq est}mate’the //f'

N ,

{ student effect independent of the class‘gy student interaction.’

* .

Similarly, thé student by item interactidn;is,c6nfounded

o '/‘. k

with the class by student by item intefacticn;tthuéﬂ.ﬁ

in the Spllt plot design takes the place of Bn + aBﬂ

ptndi
>

- - . e

, ~ 1n the. factorial de31gn. . - co ,*.‘.f

Also, in/the absence‘cf\replicaticns, there~i§~f A
~<" {
another type of confound;hg lD both\des1gns. When there 1s
only one observatlon for a. glven student respondlng to a given

. . | s .

1tem, then,.jor Equauron 1 the éxror term, ~o(cs1)' is con-

4 [:T founddd ylth the ;tem<by student (nested w1th1n class) inter-

s 4 2}' *e
z// actlon, Bﬂ 'In thls case, -Bm \\ln the Spllt plot .
. is(c) : ki'ck
. 1l .o 1 -
>~ e ,f. e o N .
o deslgn replaces Bﬂ is ,aFFc;s :jEQKCSLﬁ 1ﬁ~t e factorlal ces1gn
- Lo —-'— $ o T‘—v—-‘, R - — ] N ) N N \ N
- S Termlnolo,gy Lo TR U "‘\ ' N \\‘ ‘\\ \\
. . l‘
- The termlnology used 1n the precedlng section 1s,\for the
s LA RV AN .o LA [N ANt
i . = " Cot ! N AN U
12::7t’, most part representatlve of,the terminology used 1n_texts on-
vy _..:.;.~._/"‘ i . 3 . . N : B 3 a R
. W AL "'/‘ Tt e e i . R . - - e, .
*f‘jT;ijygqxge;,mental des1gn (e g Klrk . 1968, and Wimer, 1971). Since
s vl 'R
N . . hd ' ’ ] | .

,” T .
s’ 15 the uhlt of analysrs unaer cons1deratlgn here, . .

LY I \‘J\

bach et'ah. (1972) - ﬁould say that the spilt—plot and s

N

,\ \ e y
4
i orlal dengns have tww ﬁaCets (students and items).
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Furthermore, Cronbach ‘et al 11972} would dlstlngulsh

between the G study des1gn used to estlmate variance
T /T
components and the D study deslgn uéed to make decisions.

In theory, the G study design and the D study design need

-

s
' . N - ’ ’ ‘ . . .
not be the samé&; however, for—purposes‘of simplicity, unless - ]

otherwise noted we assume here that both the G and D studies
/ -
employ a spllt—plot de51gn.

s ‘ -

Assumptlons

4 Y

The assumptions for t&e split-plot design model in

+

*  Equation l are wéll documented in the literature and experi-

s mental design texts. However, we wish to emphaslze two of -

' §.

these assumptlons First, each effect in the model is,assumed
to be 1ndependent of every other effect Second' in order to
make the est1mates of the*efﬁects unique, the expected value
‘of each’ effect over any of 1ts subscripts *is set equal to' zero.
B “This second assumption is especially critiéal to an under-

. standing of subsequent parts of this paper; however, this assump-
tion. is easily misunderstood. Consider the effect ¢, in ’

\

Equdtion 1. Suppose, for some study, we take a .sample of n,.classes
. ' i - : <
‘from a populatipn of EC classes. The second assumption implies

that the sum of ag overuthe’population of §C classes is constrained
. #

g
to be zero, and the sum of the' estimates|of a, over the sample

of n, classes is constrained to be zero. Hoieyer, it is not

necessarily true that the sum of a_ over the sample ofnC
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3 .
. \
classes 1is =zero.. 051ng "M to 1ndlcate a sample mean,
- .
to 1ndlcate a populatlon mean, and "' to indicate.
2" [ T

the estlméted value, the second assumptlon means_that

Wlx . “v

a_ equals- Zero, 8, equals zero,"but a. does not necessézily

. ’
equal zero. . ‘

- . . ! 9

Generalizability Coefficients from a Split-Plot Design

By defin;tion, a generalizability coefficient is the ratio

of the universe score variance to the expected value of the"

.

observed score variance. For the split-plot model, with class

as the unlt of analys1s, four dlfferent generallzablllty N

coefficients can be obtained. Each of these coefficients is

characterlzed by a dlfferent deglnltlon of universe score .

& 4 -+

and, hence, a different definition of error. However, for.
~ B

each of .these coefficients, the expected observed score

’
“

variance is identical.
* %o

<

Expected Observed Score Varlance

~

Because the effects in Equatlon 1l are assumed to be

sampled independently, the expected observed score variance
. - . DY
is simply the sum of the variances of the separate effects.

For a sample of n; items and ng students, the expected observed

— — A

score variance for class means is:

e, e

“ste. .

’,
5
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(3)

R
iln._.
s(c)

Equation 1. The notation oz(ﬁ,anf is used to emphasize that

the student effeét, nsroand the class by student interaction,

o A similar ipterpre-

are confounded in the effect ©m_, ..
) s(c) |

i
cs'’ )

e ,
tation can be given to 02(Bn,a8n,g) assuming there is only one

observation for a given student responding to a given item.

L]

There is no variance component for the item efféct because
the item effect is constant for <all classes, and, thereforey

02(3) is zere. Note that the‘pdpulatidn variance components

'\\ " " where oz(ﬁ‘gw) is the éopulation‘variance of m 1
1
|

l 1

_in Equation 3 are for qampleéfbf,one item and one student.

In subsequent sections we develop the universe score

%

" variance -and the associated ééﬁefa}izability coefficient for
. four different universes of generalization: (a) an infinite

‘universe. of students and items, (b) an iq?inite universe of

-'”."- e . . -‘~(" . . Y \;
‘Btudénts "and a finite $&t of itéms, (c) a finite set of \

students and an infinite universe of .items, and (d) a finite

Infinite Universe of Students and Items o

’

If the objective of a.D study is to generalize to an

infinite universe ofi@pudents and items, theﬁ the universe of

. v g

generalization jis the ccmpletely-%gosséd universe of ///

‘e -t ¢
-

|

N , s : 1

set of students and a finite set of itepms. 1
4
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L

admissible obse}vations. This analysis treats the set of
items used in the D stug;\as a §§hple from an infinite
universe of‘iteTs that could have been used to measure the
general outcome that is of interest; and the analysis treaté

sample from the infinite

o

who might have been included in the

the students in each class as

universe of students

class. The universe

score for each class is the expected

e
=2

value of the observed mean over all possible samples Ofﬁ;

o

students and items in the universe admissible observations,

4 P .
and is given by . T &,

<

»
The corresponding universe score variance is )
. . ) A

’

= g2 '
=0 (ac) . ) 5 0

P

2
e v(.v_c_,) (5)

1

The\universe s@GQre can also-be obtained by taking the limit

of the observed $core variance in Equation 3 as n, and n

S

4 ‘. &

’

both go to infinity.
‘ ; ;
For gengralizatioﬁ to an infinite universe of students

)

v

ratio of universe score iariance (Equation 5) to expected

-

observed score variance (Equation 3):

1

.

Ton

and items,xthe appropriate .generalizability coefficient is the ,

3
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\ ' 2 ,
. g 2( : " (a)
p § E) = Z ¥ . (6)
' , = [o*(m,em  o?(@e)  o’(Bm,abm,e)
g s(a) + +- + ——
n n. n.n
- . -S -1 —L"‘i

v

The notation Epzris consistent wifh Cronbach et-al. (1972)

. ‘ " *
.and indicative of the fact that generalizability coefficients o
' B . \ ' . Y
can be interpreted as squared correlat;on or intrgclass
. \ -
correlation coefficients. The letters|S and I in parenthéses L

indicate that the universe of genéralization is an infinite

.

universe of students (S) and an infinité universe of items (I).

The brackets in the denomindtor idenéify the-components of . %
! . . g

variance that jointly constitute error variance when the @’

universe score variance is cz(a). Thus, the expected observed
A s ’

score variance can be viewed as universe "score variance. plus \

error variance. . ’ ' ‘

-
\

Equation 6 results from the assumpticn that the universe = . = -

of generalization is, in effect, the completely pfossed

universe of admissible observations. ° The s&bgfantive'questions

I

in a particular D study may indicate that the universe of gener-

- -

alization shoulZ)be restricted to some subset of the completely

crossed univers¢’ of admissible observations. That is, the

investigator may'wish to generalize to some finite subset of SN

~

* the possible conditions (or levels) for one or mote facets in

the universe of admissible observations. In particular, in

-

/

-

* ¥

7 |
' <0 o “
- . s R i —
. <~ ) . |
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some cases, it may not bé appropriate to generalize beyond the |

) . b ) - ' -0
For example, an investigator who i€ .interested in how -
i :

specific conditions' of some facet(s) includedAin the D study.

well a training program has taught stgdents'to perform a -
t [/ . . ‘ ‘
particular set of mechanical tasks is not interested in gener-

alizing to a broad set of such tasks. The figite set of tasks  T.
on which observations are taken may constutute the universe of

generalization for the task facet. (By gontrast, if the hypoth-

esis.ynder consideration concerns general mechanical ability,
the universe of, generalization would be taken as an infinite

universe of possible tasks .-that might have been gobserved.)
-f

\

Tﬁeoretically, then, for the split-plot design, some

- D studies may require a universe of generarizatioﬁ in which
’ the set 6f items (or tasks) is finite, the set of student¥ is

<

‘finite, or both are finite.

Infinite Universe of Students; Finite Set bf Items . %

’ |

o If gengralization is to the finite set of items included, .

in the D'stﬂQYﬁ then the universe score is’ the eXpected value

.
o N

J
of the dbserved mean score (Xc__) over that particular. set of §

fl
- - PR

. items andqgver all students. The components that enter into

— ’

the observed score are not changed by rest:icfing the .universe,

of generalization, and Equation 1 is still the appropriate

_model. 1In taking ‘the expected vthe‘cf~§$;.K, only terms with ) -
.- ) o . 1
s as a sybscript become zero, and the universer score is. i
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given by . : -0 N
< l . va ' : '
pg = p + o +\8. + of . (7)

c. L3 DO

The item effect -and the class by item interécfion are present

in Equation 7 because the expected value is mot tékenIOVgx all
! : .o

items in the universe of admissible observations, and there

will, in general, be systematic effects due ‘to the finite. set

. >

of items ihcluded in the universe of generalizabion. ‘ —

.
[ * -

H ’ ‘ . . v ‘ '
The universe score variance corresponding to Equation 7 -is . ®

- ) 4
v [
. .
: ¥ . . -~ B

5 5 2 (aB) o ’ S
o-(vc) = 0" (a) ¥ —— . — - (8)
y = ng ~ E ’,

— «

-~

"Equation 8 can also be derived from Equation 3 by taking the

- . . . . e N N " . \1 )
limit as ns-approaches infinity. Again, B_ 1s a constant for
. 5‘." »

+ T . %
L

all classes, and 02(5) is zero.

, . . Q’ 3 Y .
For generalization to an infinite universe of students (S). §
’ ° T8 .

L4 M \
and. the finite set of items (I*) used in the.D study, the geher-

alizability coefficient is obtained from Equations 3;and 8:

. N [ . :
. 2. oz(aB) X -
. o (@) + —_EI—— ' o
,E p2 (.§I_I_*) = 7 "2— 2 ™ _ 7“ . (9)
. ‘ ‘9 " (aB) _|o" (m,am) - o (BW,aBT, )
0 (a) + : 7 + — ~
: n. " n " n.n_ .
-1 =5 - TASS ’
\
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‘Infinite Universe of Items; Finite Set of students

In educational research and evaluation, it is generally

A

inappropriate to restrict the uniberse of generalization for

the student facet. .For diagnostic purposes, we may be inter-

S
&

ested in the universe score for a single student, but class
means are seldom used in this way. In program evaluation and /
research, the intention is almost alwayé to generalize to

o .

|

1

|

|

|

i

. 1
some population of present and/ér future students. . ?
;

1

i

Neverthele%s, one can obtain the generalizability .
coefficient for a finite set of students and an infinite
universe of items. Later we will show that this coefficient \\
corresponds to one of the statistics reported in the literature
for estimating the reliability of class'means. For this
universe of generalization, the universe score is

: s * * . _,/T//—,(//
VE = p + a_ +om, (c) ! ‘ : - (}0)
and ,the universe score variance is @ ' >
. . ;- - . R
5 9 oz(n,an) 7 > & -
o (vc) = 0 (o) + ——m———— . ‘ (11) -
e n, . . .

— / ‘
The variance due to the student. effect does not go to zero

begause a differeht set of students is in each class.

//?
Equatlon 11 can alsa be derlved from Equatlon 3 by taklng the

limit as n. approaches 1nf1n1ty.

-y
~
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For generaliZation to an infinite universe of items (I)

and the finite set of students (S*) used in the D study, the

+

generalizability coefficient is obtained from Equations 3 and 11I:

2,
‘9 o” (m,am)
: .. 07 (a) +

Bo2(s*,1) = —1 5 — . an’
\ - 2 o (m,am) Oz(aﬁ) 02(3“ra3“'§)
| ‘ 0" (@) + ————| + + '
, LI 24 ) Eigi

-_— L

Finite Set of Students; Finite Set of Items

Restricting generalization to a particular set of

o e

students and a‘particular set of items is even less likely

to be appropriate than restricting the universe for either
facet and generalizing over the other. The results are
presented here because they lead to a coefficient that corres=-

ponds to a neliability coefficient that 'has been proposed for °

class-means. The universe score for a fixed set of students

-in each classz and a'fixed set of items for all classes is‘:
- * ) . ) ’
‘2‘= Wtoa, Fm Ly Byt aB Lt By,,(g) ; - (13)

—— — —

and the universe s¢ore variance is L )
’ ./(e -« . - .
- 2 . 2 02(“10-“) 02(0-8) 02(8“10-8“) TS
(vc) = 0" (a) + ——— + + . (14)
_ n n. n.n_°‘ s
_§ . - —_] \ —_] S

. — -

J -

The universe score variance is estimable if the effects,

« BT .

is(c) and e .y in Equation { are not confounded; that is,

; —ol(csi)
. '\) " . . ) ‘24 . . '
ERIC RO ~
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<
-Equatlon (14) is estlmable if there is more than one rep;1~

o . . b ’

cation of each class- student—ltem ohservatlon.‘ This coeffl— -
e - . . e

c1ent can also be est1mated 1f it can.be assumed that

. c (Bn,aBn)/ninS equals zers; in this casep’the true score

4

variance is given by the first three terms“in Equation 14, . ~

. * . . :_ &
and these ,variance qomponents are all estimable.

For generallzatlon to the finite set of. 1tems (I*) and
the finite set of students (S*) in the D'study, the generall-

zability coefficient is obtained from equations 3 and 14:

: o /,
) 2( ) +-02(1r,onr) cz(aB) cz(Bn,aBn) ‘ -
o“ (o + +
2 s i “i%s
£o%(s*,1*) = > 5 . — (15)
5 o (m,am) o” (aB) o“ (BT, aBw) o” (ey
o (a) + + + o+
n - n, n.n_ ~ n n.n -

—s =i ~i—s t—0—i—s

where ng is the number of replications of each class—student-

.

item observation. .

~ N |
Classical ‘Relidbility and the §pearmanLBrown Correction

All four of these generalizability coefficients have the e
¢ 9general form of a reliability coefficient if true scorXe is
defined to be equal to the appropriate universe score. : The

- 74 .
differences among the coefficients are, then, the differences

T.“

among their définitions of true score and error score.
‘For'.Epz(S I) Equation 6, the unlverse score variance 1is

the sampling variance of the main. effect due to classes, © (a).
- v ¢ - v

.
[y . NS
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v

All other components-in the observed“score variance are
sources of error. "In classical test theory, the error variance -
S . - y - S

is undifferentiated; increasing the number of‘fbservatiqns
by a factor of M leaves the true score variance unchanged

and decreases’ the error uafiance,by l/g.“This regu- \

larity is the basis for the Spearman~Brown formula for changes

1n the lenéth of a test In Equation 6, the'error‘variance<has.

’

no such s1mple relatlonshlp to, the number of sttdents, 1tems

or the jproduct of the two; consequently, the Spearman-Brown
L] © . .

formula does not apply. Tt is, hddever,'easy to compute
PP p

P 5

Epz(g,g) for any number of students and ite@s by substituting
3 . . . )

the approprigte values of n_ and éi‘in Equation 6.

- .

For SQ?(§,£*), Egquation 9, where interest is restricted

to the finite set of items in the D study, the class by item’

-

interaction i# a component .in the true score varignce. For

he t

}‘ thlS COefflC t,.increasing the number of students by a
: fent,

¢

e~

\ factor of M will decrease the error” varlance by, 1/M but ’

\\nlll ‘not affect the un}ve;se scofe variance. Thus, the o

—_—

SpearmfnéBrown formula holds for the number of students.. -
- However, increasing the number of items by a factor oflg
does not decrease the error variance by 1/M and doe€s

affect the universe score variance. Thus, the Spearman-Brown 1

. ‘ !

formula does not hold for items. - ) =

1

Simjlarly, the Spearman-ﬁrown formula applles to E;>(s* I) -
3 for changes in &he number of items but not for changeE in the '

number of students. Finally, the Spearman-Brown formula . s

. \ . 1 4
Q applies to E(#%Sf I*) for changes i he number of replications
E MC pp Y . g 126: ‘ P el

L 3 . ]
“+ -~
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but does not apply ‘for changes in the number of students or the

~ . '. b
-~ number of items, because suchlchanges affect the universe

4

.
At

s§e variance
i 2 ~ . Estimation of Variance Components

The process of qobtaining mumerical estimates of
generallza;:llty coeffaC1ents usually involves é;o steps.‘5
Flrst tpe components -of varlance are’ est1mated from the G

. ’study. _Then, the generalizability coeff1c1ent is calculated\
; nsing the estimatéd variange cdmponents and the sample sizes:
from the D .study. L e )

/ ~

General prccedures for the estlmatlon of variance compo-

)

Y LY

nents from computed mean squares are d1scussed by Cornfield
and Tukey (1956), Crbnbach et al. (1972)” Mlllman and Glass

(1967), and by most standard textbooks on experlmental design’

«{e gY, Kirk, pp. 208-212, and Winer,'pp‘ 321-332).
. S ,

3
’

In‘the next two sections we treat the estimation of

'

variance components when both the G~ and D studies use Spllt-

plot des1gﬁs. ‘Subsequently, we briefly consider the estimation

$
of variance components when the G study is a factorial design

and the D study is-a spiit—plot design. . b

v
In order to estimate the variance components, we must

1

specify whether the model assumes random, mixed, or figed

.effects. The choice among a random, mixed, or fixed effects -

-

model is closely related to the choice of a universe of

genefalization. To treat a facet as a random effect is to say

. pa
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that the observed conditions of the faeet are sampled from

! >
an_infinite universe of similar conditions. To treat a facet
~ .

as a fixed\effect is to say that‘the observed conditions of

= the facet constityte the. universe of conditions of ehe facet.

In‘subsequent sections we d1scuss the choice among random,
(¥

' mlxed, and flxed effects models 1n the G study, and the impli-

~

cations of this choicé for 1ater D studies.

-

Random Effects Split-Plot Design ‘ !

. The four generalizability coefficients have all been

N, s R -
developed in terms of components of variance for a random =

L —— y

') 7
and the conditions of the two facets were sampled from 1nf1n;te‘.

] - T
~

L «#”"A,

unlverses of posslble classes and conditions. The formuiagff -
for "the expected values of the mean squares, based on'a random C L
modef?Eare presented in Table 1€’where it is assumed that all

classes have the same number of students.  In Table 1, primes

-

are ‘used with sample sizes in order to 'distinguish G study samplé'

~

. . e
estimgtes of the wariance components in terms of mean squares,

<

~ from the random effects model. - - . -

Insert Table 1 about here

Using the estimated components of variance 'in Table 1 and

. E - '
the sample sizes from the D study, we can estimate each of the

four generalizability coefficients discussed previously. That

-

1s, the components of varlance from the Sandom effects model .

Vet <

can be used to estimate generalizability coefficients for random,

effects ahalysis of variance. It was assumed that the,élassesvf-a .

0\
N
\
e % N

sizes frgm subsequent_D study sample sizes. Table 1 ‘also provides

-----

3
N
N

O Y P Y

h)

L e N
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ﬁixedefcr fixed effécts. Generaiiy,_this is the most effi-

c1ent and useful way to calculate these coefficients. However,

N 0
-

lf both the G and D study 1mp1y the same universe of gcnerall-

R

zatlon (e.g., both have 1tems fixed and students random), then
‘/one can redefine’ the structural model and/calculate the
\ A 1 .

appropriate generallzablllty coefficiepnt more directly.

Mixed Effects and leed Effects Split-Plot DeS1gns

o ,The ana1y51s of variance iﬁ“Table 1 treat all effects .

* ! ;., -

as random effects.' The data from the G study 6an .also be

analyzed using a mixed model in whlch ane of- t%ﬁ%facets is

M‘_,

treated as a fixed effect and the other is treatednas a nandom

a i

effect. In treating a facet as a fixed effect; the 1nv?st1-':

» .

gator is deciding that his interest is in the observations

facet and in no other possible conditions of that facet. For
the spiét-plot design employing mixed effects, either iteﬁs or
{ g

studeht‘ @ill be fixed but not both.

w’"

.
- NN

o

collected under the finite set of conditions of the fixed - o

If the 1tem facet 1s fixed and _the student facet is random,‘

~
' Y e

then the frnlte set of 1tems under con51derat10n constitute the
<. .
universe of generallzatlon for the item facet Thus, when we
L -
take the mean over 1tems in Equatlon 1, the item maln effect

and all other effects 1nvolv1ng 1tems are zero. - The resultlng

! .

structural model for the obgerved mean score for a class is +
. - - - q-.~j_)\ . - ' .
) ,‘ A ’:_ ‘ f}’ \_/ -#1
(16)

o e, - ; >

- X' = + “é + n.(c) .

5

[ s \ —
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Using Equation 16, the expected observed score variance is

EoZ, (x...) = o2 (@) + o2, (m,am)/n; (17)
= t pu = —
3 , .
the universe score variance is ) '
2 _ 2 . :
oi*(vgx = ol*(a), \ i e (18)
s F ’

and the generalizability coefficient is

2
g 2 . ol*(a) )
P (S,I*) = - : (19)
- 2 2
Ol*(a) + OI*(ﬂ,an)/gs

.« N ~

where the subscript‘l* is used to indicate that these

?

components of variance are estimated from a mixed model with
~

the item facet fixed. Equations 9 and 19 have the same inter-

pretation, and, as shown belgw, they are algebraically identical.
: ~ . .

~
~

\jInsert Table 2 about here

\“‘_
fa,

Table 2 lists the expected values of the meaﬁ squaiss for "
4

a mixed model ANOVA with the item effect fixed and all otber

effects random. ' Table 2 also provides the estimated values of

the variance components.in terms of mean squares. In comparing ..

K ,’, - . : . /"._/,'
the mixed model in Table!2 with the random model in Tablé,@;<¢é

- > -

note that the mean squares in both tables are identical for all -

sources. Furthermore,

7SN T -7 . '
, msic) - ms(s)

L 1 .
n'n . . .
o i''s
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MS(C) - MS(S) - MS(CI) + MS(R) MS(CI) - MS(R)

= 3 +

™ n' . nin'

—i-s —1-s
‘ = 8% +, 8°(aB)/n! . - (20)

- 4
Similarly, it is-straightforward to show that

62, = 6% (n,am) + 62 (Bm, ! L
I* T,0T) T (n,qn + (Bn,aBn,g)/Ei . (21)

The algebraic equivalence of .Equations 9 and 19 ‘is now
immedictely evident.

Also, if the number of students and the nmimber-<of items

Y

are the same in the.G and D study, (i.e., n! = n. and n' = n
N ==y ~i —s -s),

it is easy to show that, for both the random and mixed models,

"

the estimated value of the coefficient is given by

[ 3
s MS (C) - MS(s) . '
Epz(g,z*) = — — . (22)
MsS (C) |

- 1

The random effecté ANBVA outlined in Table 1 attribytes
tﬁe—mean square for classgs to four sources, ‘two of which
involve the sampling vari@gsf due to item effects. 1In the mixed
model ANOVA outlined in Tabl;TE, the mean square for claSses’

'is attribuped to two effects, and the interaction effects
iHyolving items do not appear. Ih the mixed model, there can
. be no sampling variance for item effects -because tHe mean scores

are not based on a sample of items but on the universe:of items.

[

The variance that was attributed to item effects in the randem
' ¢ -

. - S
< N <

Q :. ' . . 31
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model mist now be attrlbuted to the sampling of students or

to dlfferences between the universe scores for classes.

A comparison of Table 1 with ?able 2 shows that the
mean squares used to-estimate 02(Bn,d6n,e) and oz(n,dn) in

v v . . . ~ . . : .
the random meédel are used to estimate oi*(n,dn) in the mixed

. °
hd

model. .Similarly, the mean squares used to estimate OZ(GB)
and ¢ (a) in the random model are used to estimate oi*(d) in
‘the mixed model The estimates of the class effect a#id the

student effect are larger for the mixed model than they are

for the random model. ‘

- This redistribdtion does not affect the expeeted .
dbserved sgore variance, but it does change our estimate of
the universe scqre_zariance. That part of the mean séuare
for classes that is assumed. to be dUe to sampllng of items
in the random model is assumed to be due to differences between

class universe scores in the mrxed model.

The mixed model has -led to a somewhat simpler expression

for ﬁp (S I*),,and it will yleld the’ same value\for the

\m

estimate of this coefficient. Wathln the assumptlons of the

mixed model it-is not pois1ble to estimate the generallzablllty

coeff1c1ent 5p (S I) which assumes generalizatlon over both
facets( For this reasbn‘ the mlxed model is hot recommended

for the analys1s of the G study data. The mlxed model has Been

\\\~ﬂé/

1ntroduced mainly. to prov1dﬁ addltlonal 1ns1ght into the nature

of the differences between the generallzablllty coefficients
( .

\ . ‘ : ' . "'. : 3.2 . . . s

‘

R RN
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S
introduced earlier. ' , e

similar analyses™can be carriedaéut for the fixed

L

effects, model and the second mixed model in which the student
facet is fixed and the item faégt/is random. For both of these

models’ the generalizability coefficient is equal to the

14

variance attributed to the class effect for the particular model

-

divided by the estimated observéd score variance. The numefical

estimates of these cdefficients will be identical to those
\

i »
previously obtained using componeﬁ&s of variance from the

.

It iIs generally best to estimate.and report components
i
of variance for the random model. ‘If the components of the --
réndom'model are known, any of the four generalizability

coefficients can be estimated; but the components from a model

with a fixed facet cannot be used to estimate a generalizability

~coefficient that assumes general;zatién over that facet.

Random Effects Factorial Design .

If the G study is a factorial-design and the D study

is a split—blot desiSB, then to calculate generaiizabi}ity
. ; { ' . : .

coefficients for the.D,study. we estimate the appropriate

ariance components from the G study factorial design

| ee'Equation72). Since the effects are independently sampled,

2 . —2 - L4 2' . - 0. N . AR
o] %nﬂa%) = g7 (m) + ¢ (am) in terms of variance components from
-« . v , 4 ¢

the facggﬁigl design. Similarly, oz(Bn,aBn,g) = oz(Bn) + s

ozlasn,gf-if‘there is only one observation per class-student-

s

’. . . . 33
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item combination in the G study; or ¢ (Bm,aBm,e) = 0° (W) +

oz(aBﬁ)»+ oz(e) if there are replicated observations. Since
oz(a) and oz(aB) are unconfounded in both the factorial and
split-plot design, these variance components have the same

interpretdtion in boéh)designs.

Given the above relationships, we can estimate each

-

of the generalizability coefficients for the spiit-plot

design, with the possible exception of- 5;;(3* I*), Equation

-

15." This is the appropriate coefflclent when the item and
‘&é? a .. Y,
student facet are both fixed. It can be estimated only if:

(2

(a) 'there is more than one observation.for each class~student-

‘item combination or (b) we assume that both cz(Bn) and o2 (apT)

. are equal to zero.

Generalizability Coefficients as

Expected Values of Correlations

Each of the four generalizability coefficients can also

, .
_(Be interpreted as the expected value of a' correlation

' . . 0y 1
between palrs of measurements on a sample of classes. 1In order/%

to examlne the dependablllty of class means as correlation

coe£f1c1ents, it 1s necessary to thaln two measurements on
‘ b
i

eacP class’. The appropriate procedure for obtaining these two

|

meﬁsurements depends on the definitiop of the universe of

geAerallzatlon. l ' f
| : -

Generalization qver Students and Items ‘ '

If both Studénts, and items are sampleq from infinit

!
1 . . :

v
1
.
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universes, each measurement involves a sample of students

[

sand a sample of items. The sampling of students and -items

for a second set of measurements is independent of the' first.

t

Using the random model each measurement has the form

+ + -
X =t n.(g) + B, +aB,, t+ BT, +

Ceoe ..(S) ° e (23)

e
c c c —olc-:

2

For any pair of measurements, X

I's

c.. and X!, each measurement

has the same expected observed score variance, givengby

Equation 3.

The expected value of the covariance of Xé.. with Xé..

1}

isloz(a). The other effects are sampied~independeptly for the
two sets of measurements, and, therefore, €§i expecggd values
Af all other terﬁs in the c;variancg are zero. A
The expected value of the correlation between the two

mean scores is approximately equal to the expected value of

the covariance divided by the expected value of the variance

(Lord & Novick, 1968, pp. 201-203): .

' T oz(a) @ .
Elr(x XLo)1 = , (24)

-c_.. -c_.. 2 2 2 R
2 o (m,am) o (aB) g”(Bm,aBT,e)
- 0" (a) + + — .+ ,
R S

. . . E 2 . )

which is" identical to p"(8,I). s,

;Hﬁs, the generalizability coe¥ficient, genera;izing over

s
both students and items, is approximately equal to the =~

} | 35
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a

expected correlation betieen two sets of measurements taken - °
4 - b : °
on a sample of classes, where the two sets of measurements are -

based on independent samples of both stdﬁentszand items.,
. A correlation of this klnd can be obtained on a set of classes"

N Ry taking. the mean oqapalf of the students and half of the

°

items as one measurement, and the mean on the,remalnlng students

-

and items as the other measurement. Unfoftunately,’it is not

possible to apply the Spearman-Brown formula in this case; .
. . Y
consequently, it is generally necessary to 'use the ANOVA s

<

v

procedures outlined earlier.

Generalization over Students Only ‘ . -

¢ s .

~ If generalization is to an infinite®universe ofjstudents

. e

and to the finite-set of items used in some D study, an h
appropriate pair of measurements would use the same items but

Q -
independent samples of students. An estlmate of the correlatlon

i v

coefficient could be obtained by taklng a random spllt on each

class and correlating the mean scores over the two halves of °

é

each class and over all items. In this case the Spearmaﬂ-

Brown formula does apply and can be used to estimate the
: X O
cqrrelation for full classes- A Y

) “ -

The derivation of the expected value of the correlatlon, r
? *7 .

~

-

cotrected for class size, over all poss1ble sp11ts on classes
X .
is found using “the same procedure employed in the'prev1ous case. _

.The expected observed score Varlance for the twofmeasures 1s

P t
.again given by Equation 3.7 The expected value of tpe covarlance,

5 Vpaur
/ . 36 e L e »
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L I ‘ ’
however, has one agditional term. Because the same sample of |

items is used for both measurements, - $

Vs
~ .

coviaB ., ,aBl,) =702(a8)/3i '

a— —

—

and the expected value of the coVariance is

. o) + 0% (aB)/n, . G2 X

The ratio of the expected covariance to the éxpected observed
score variance 1is Epz(gll*). This coefficient, generalizing
over students but not over items, is approximatelyxequal to.
the expected value of g split-class estimate of reliabiiity
that is corrected for class size using the Spéérman;Brown
formula,

‘Other Universes of Generalization - -

~\\' . Similarly, it'qan be shown that the coefficient Epz(g*,z),

for generalization over items but not over students, is approxi-
; ‘ : -

mately equal to the expected value of the split-halves relia-

bility éprrected for test length. Also, the generalizability
/ »

coefficient Epz(§f,1f), generalizing only over random efror,l

’

is approximately equal to the correlation between two independent

measurements of the class mean usin§1the-same items and the
. o
same students for both measurements. .

.

.
X *
& ¥
.
|
.
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Previously Reported Reliability Coefficients

The earlier sections of this paper have presented a,
discussion of four generalizability coefficients for estimating
the dependability of’cless means. In this section, three
coefficients that have been proposed for estimating the
reliability of class means will'be presented and related to- the
generaiizability‘coefficients discussed earlier.

In a discussion of the statistical properties of school
;means, Shaycroft’ (1962 ) proposed the following coegflc1ent for

I3

estimating the reliability of class means:

On ) ) ,
v e e S (25)
where . . ¢
*rggp’s reliability of class means, s
Ian E.reliebility of student seores,
number of students per class, . ?

I
|
i

0 - y '
standard deviation of "class means, and

a
|
1

. -
A = standard deviation of student scorés. ‘o

Q
i

N
- ’

The trandlation of this formula into the notatien used in this

paper is straightforward. < ' g ) / > -
" Prom previous resuits,'c% is by deflnltlon ﬁhe.expected

.,

- .

o v
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. -observed score variance, 5d2(xc.;), in Equation 3. ’ *

. Brennan (in press) provides formulas for oi and Tan

of components of varianqe from the split-~plot model:

r . - >

in terms

Ui = Gz(ﬂ,an) + Koz(a) + [§gz(a8) + 02(Bn,a6m3§)1/gi (26) !
and $ N ‘ . - ‘ ~K

oz(n,ano +'502(a)

) Lap = ' ‘ (27)
'3 , 0'2 A
_ A ~ .
where , -
e . N
EE(EE 1) ]
K = . (28)
nn -1 "
—s—C

. Shaycroft's formula assumes that the G study and the D study *
use the same data; therefore, there is no need to use primes

to distinguish G study and D study sampie sizes.

¥

Substitdting for Laps o%, and'oi in, Equation 25 gives

Shaycroft's formula in terms cf components of variance for the

-

random effects split-plot model:

) oz(n,an) og(aB) N
¢ (o) + ———— + D E—— : )

. 25_ ;—fﬁ;‘.

Yo = . (29)

. AA 2 . 2 2 ’
. 2 o"(m,am) 0" (aB) o (Bm,aBE,e) * ,
o (o) + + +

M . ‘ES Ei ESEJ._

_— - - } - =
'Y -

\ e




—\\v.

where B
n (n_ - 1) X .
=< —s ' = )
L= : _ (30)
n,on. -1 : }

The coefficient‘E'in Equation 29 depends upon tﬁe:numbeg'of
classes\and the number of students per class used to estimate

-rAA and'oi. The coefficients K and L arise ‘because the
- - ¥ .

.

student effect is confounded with the class by student inter-

action in the split-plet design; thus, these coefficients

< - /,

reflect complexities in calculating the appropriate number

" of degrees of ffeedom when the sampling of students is

-

stratified by‘class,ratherAthan éompletely random. s
» \ {’;'1

. Since n_ and n, are both greater than one in the' split* -
plot design, L is between zero and one; and, therefore,

-

- |
Eo®(5,1%) <= rgx <= Ep?(s*,1%).
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Thus, Shaycroft's coefficient (Equafion 25), overestimates
5p2(§,£*) and undersetimates Epz(g*,i*hu;
In most ﬁaractical situations, Eé'(and possibly Ec) is

likely to be fairly large; and, -consequently, the cqefficieﬁt

L will be close to unity. Assuming that oz(Bn,aBn) is close

to zerg, it folTows that Iy Will be approximately equal to

Ep2(§*,£*). oo . J
» WiT%y (1970) has ﬁroposed an intraclé%s correlation

Eoeﬁficient'for estimating the reliability of class means.

In his analysis, the estimated universe score variance is

- :
)oz(aYn+ [og(aB)]/gi, and his coefficient is’equivalent to

Equation .22, Ebi}g,z%) in the specialwcase where the G and

* AN

D studie$ are identical. .

‘Q'Thrash and Porter (1974) have discussed two procedures

.

for estimating the reliability of class.means, JThe first of -
these,procedures is to split each class into two random halves,
calculate the correlation between the mean scores for the half-

classes, and then use the Spearman-Brown formula to obtain the

W *

coefficient for full classes. It has.alréady béen shown that
the expec;ed vafue of‘coeff;;ients calculafea in this way,
. over/ai} possible splits'on claséés,.is giyen by Equation é2J
ﬁpz(§,£*); which Es equiyaien% to &ilhy;sﬁcoef%icient.
The seqpnd‘proéédpre discussed by Thrash and Porter is to
'randoml; §plit the test into two halves,. correlate taé half-tést'
)

-
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means for fulle classes, and then use the Spearman-Brown

'

formula to obtaln the coeff1c1ent for the full- length test.

The expected value of this coeff1c1ent, over all random SplltS
3

“on the test, is Ep (S* I). "This procedure is implicitly

generalizing over* items but not over students. Because

. 1 s A \
Thrash and Porter recommend the spI&t—test procedure over the ; -

split~class procedure,\ e Wlll refer to the spllt—test coeffi~

-

cient as Thrash and Porter's coefficient.

L ~
Of the four generallzabll;;ty coefficients d1scussed °§;
earller, three are d1rectly related to coefficients that have

I

been~propo§ed‘for estlmatlng the rellablllty'og class means. “

~ - - * A

w

" The authors aré not aware of any analysis of the dependability .
A -
of class means that uses tradltlonal rellablllty theory and

. .~

develops a~re11ab111ty estimate eQulvaleyt to Ep (s,I).
G . ~a

The ‘omission of ‘EDZ(S I) is notﬁdde‘to chance. £

-

. Tradltlonal reliability theory 1ncorp6ra§es a un1var1ate inter- .

4

pretatlon of error.’ " The assumptlons madexabcut error variance
' \.'\ . \
~ \ 3ot l

) digﬁer somewhat, but the errors are always assumed\to be drawn

from some univariate distribution. Slncekmﬁp ¥s, I*), ,Ep (S* I),

‘.s\

and E}) (s*, I*) all arise in the context- oﬁkmcdels where error

%
e N AN
-is univariate, these coéff1c1ents are perfedtI?iCpmpatLble with
- \f

the framework of classical reliability theory w’.}?cr £pu ,I),/"\

@ \

however, the approprlate model 1nvolves two dlsﬁg

.

- \\‘ \“,*“ Mo .
~ ‘d. ‘.\';~, v

c pdnents
\\\\\ ‘Qn} \/
of error whose separate contrlbutlons cannot be cqmblned 1nﬁo
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N
»

ALY .;
. ooy -.’ ‘f ) ! ! . v J y ’\.~
'~a 51ng¥é_Un3var1ate/error term. Therefore, the appropriate
STl el - © ‘
. model for '£p?(§,£) doés not arise' naturally within classical
“reliability theory. FARE

Choice of Coefficient when

L ' Class is the Unit of Analysis-

/‘ 4 . s .\

The choicé;gf an ap?ropriape geﬁeralizability éoefficient
,forla,partEFﬁlap‘study depend; upon the universe of generaliza-
. tion that-is intended. #F

s Whenrgclass is the unit of ahalysis, it isfaifficult to

conceive of situations in which the interpretation of the
. . =

results of a research or evaiuation,study applies only to the

«

" T>tadents involved in the study. If the results of studies

involving new curricula, teaching techniques, human learning,

o etc. are to have more th?n anecdotdl interest, they must
1 ’ v - ) ' '

be generalizable to some universe of students beyond thoge s

N

who aqtualiy €xperienced the treatment under study. The
intention to generalize to.seme larger universe of students is

&uite explicit whenever vdriation among students is used to

A R f N \,
estimate sampliag error. : ¢

. . M . ,

Also, it is usually inappropriate'to restrict generaliza-

tion over items td the particular finite set ofMitems used in
‘ »~

some study. However, in educatjonal research and evaluation,

it does sometimes happen that the set of items in the study

hed ‘ ' -
exhaust the universe of behaviors that are of interest. In

such cases, it is not appropriate to generalize to a wider

. . - %ﬁf i R N ,‘ ’

N
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universe of items. For example if a dental Hygiene program~
is intended to train childfen in the use of a few bas1c
skills, then the items used to measure the effectiveness of
the program might exhaust the universe of interest.

The above observations implyathat, for describing the

dependability of class means, fp (S I) is usually the most
/

appropriate of the four generalizability coefficients _
3

discussed in this paper. f;) (S,I*) appears to be appropriate

ever, ‘appropriate. From this rationale we conclude that:
. . LI
(a) Wiley's coefficient, which is equivalent to fpz(§,_I_*‘),

is appropriate in some cases; (b) Shaycroft's coefficient,
which is an upper bound for §p2(§,£*) and a lower bound for

ﬁp (8*,I*), 'is perhaps appfbpriate in some cases; and’
‘ '
(c) Thrash and Porter's coefffcient is not likely to be

appropriate unless one can make a strong argument for restricting
. ‘ L .

generalization over the student facet. '

. {
In summary, clearly there“is no universally best coeffi-

3

cient; the most appropriate coefficient can be identified only

3

in the'context of a particulag‘study. However, we believe

. that.'ﬁp (§,I) is, in most*cases, the most appropriate coeffiCient
_—y .
to.use. We also note that, from examination of Equations 6 9,

v

12, and 15, the follow1ng relationships hold
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Eo?(s,1) <= £0%(s,1%) <= £o2(s*, 10, (32)

Eol(s,D) <= £ol(sn,D) <= Eol(st,10), - (33)

and Epz(g,_l_*) is ‘greater than fpz(g*,l) if

4
> 1. o . (34)

‘e
]

Summary and Conclusions

Using generalizability theory in the context Of a split-

plot design we have developed and discussed four.generaliia-

(;'bility coefficients for describing the dependability of class

. .Jmeans. We have shown that these coefficients can be
- - 9 . : - N
"obtained in thrée ways: . (a) using. variance components -from a

random effects analysis of variance; (b) uetmg variance compo-

'nents from a mixed or figed effects andlysis of variance; and
(c) calculating the expeaﬁ?d_value of particular correlation :
. . : | \
~ coefficients. These four generalizahi}ity,coefficients have -

been compared tQ three previously reported statistics for

estimating the reliability. of class means. Confusiég’QEnds to

-

arise because these reliability coefficients are characterilzed
. - by different definitions of error. Furfhermore, none of thes
three reliability coefficigntsvis equivalent to the generaliza-

‘ bility coefficient _£p21§,£), whiech is, in our judgment, -
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s N N ~
NN °

~

e . N
generally the most appropriate-coefficient"
Low

I3

_w'%ﬂ— It is understandable that ‘Ep ($,1I) has not been given

/"" . [
.2 fiuch attention as a coeffiCient for descxibing the dependa-

bility of class means., The three prevﬁousl repormed

»
\

' reliability coeffic1ents were developed uSing a univariate

conception of error consistent with classical reliability

R A}
" theory. .Epz(s 1), however, depends upon a multivariate

-~ )

conception of” error, which is not easily accommodat ,in

-

class1cal reliabili theory, but arises, naturally in

Nerasr N

generalizability theory. r S

- The,generalizability coefficients developed heze are .=

descriptive statistics and do not depend upon .any p

L

assumptions about tHe’ distribution.of errors, Such parametric

I'4
.

assumptions need'to be made if one wants to establish confi-

rametric

’.. ."\.

dence intervals or perform statistacal tests of smgnificance.

However, the advisability of performing suchitests of signi-

\ . . 3 . .
ficance is questionahle. Even if an estimated variance -compo= -

nent does not possess statistical significance, it is an
7 .

unbiased estimate. Astsuch, it is better to use it than to

replace it by zetro (Cronbach et al.,, 1972, pp. 192-193).
In this paper Qe have considered class. as the unit of
i
analysis in a split-plot design. That is, we yave used the

word "class" to indicate an aggregate_nnit of analysis with one

» N

level of nesting. The extension to multiple levels of nesting

s

46

i
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- - - M . 0{
is a relatively straightforward application of the procedures

discussed here.(see Cronbach et al.; 1972).

b We have assumed throughout this paper that classes are

-

- - . .‘-n.

a random effect. 1In our judgment, this -assumption is

, generally valid, Nevertheless, tle formulas for the fouraf°;

- - » -

generalizability. coeff1c1ents from the spllt-plot deslgn

re unchanged.4if we assume that class S, are a f1xed effect.

Sees

_Also, in order to simplify. the discu331on, we have

T v
assumed an orthogonal split-plot design in which the number

- of students within-class' ﬁs' ig constant over all classes.

Procedures for doing an analy51s of variance for .a split-

plot design with’ unequal n' s are,avallable 1n most standard

- L.
P
Y

"7~ experimental design textg (e e.g.,” Kirk,. 1968, pp. 276-282; |

v £
~ ‘ ;

Winer, 1971, gp '599- 603)-

e Flnally, we note the follow1ng recommendatlon from the

most recent edition of Standards forjEducatlonal & Psxcho-

/

logical Tests (APA, 1974): the "estimation of clearly labeled

compohents of score\variance is the most informative outcome of

oy a rellablllty study, both for the test develbper w1sh1ng

to‘lmﬁrove the rellablllty of his 1nstrument and for the user

-~

' desiring to 1nterpret test scotes’ with -maximum understanding"

- s

(p. 49).- Thls 1s equally true whether the unit of analysis is

- ‘ \\- -~

a person “or an-aggregate of persons, such as a class. If

components of varlance from a random effects G study are

.

B3N
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ported, then’a number of generaiizability (oxr reliability)

3

|
;foicients are eésily‘egtimated, and a single generaliza-
| .
N

can replace a number of separate reliability

b ma—y -

studies. . -

- ,»,.
W

Y

/

e}

/

s
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. Table 1 :
| . $
Split-Plot Design Analysis of Variance

12

.
. ~

All Effects_Random

L
~

Source

Expected mean square (MS)
\

Classes (@) 02(Bn,a8n,§) + Eiéz(n,an) .

. 2 | Vo 2
+ 6" (aB) f ningo (o)

-
L4 ]

t

Students (S)

02(Bn,a8n,35 + Eiqz(h,an
o (7,a87,¢) + nlo?(aB)
+ ninta? (8)

Classes % Items (CI) ‘ ! 02(Bn,a8n,e) +
. ¢ —— . - -_—

Items (I)

Residual (R) nl(n} n, - 1) 02(Bn,a8n,g)

.
)

62(Bn,a8n,g) = MS(R)

6% (a8) = [MS(CL) - MS(R)1/n}

GZ(NQG&J{; [MS(S5) - MS(R)1/n}

6%(0) = Ins(C) - MS(S) = Ms(CT) + MS (R) J/nin}

~

6%(8) = [Ms(1) -'Ms(cI)1/n'n!"




\Generélizability

<4 . . :

N : 51 ~ ?
. . : :
Table 2 » |
Split-Plot Design Analys1s of Varlance . >
¢
( Classes and Students Random, Items leed ;
-3 i ) A s ]
Source ag ' Expected mean squarea)(gg) ) ﬁ
t | 2 N

Classes (C) 'Eé -1 1 EFI}(r,aj).+ gégiol*(a) .

4" ! L] ! 2 .
Students (S) v E.C_(EE - 1) _r_lioy;(ﬂ,an)
ItemS‘(I) ’ t.r-l-]!' - ] | ° Ui* (bﬂ,abﬂlg) + Eé(f%* (ﬁ):d é
, + n~n—elg(b) %
: ' ) 2 ’ 2 '\%
Classes x Items (1) (gé —¢l)(2i - 1). 01*(bn,abn,e) + Eésl*(?b) |
. . 2 . ) :
Residual (R) ne(py - 1) nl.- 1) ol (bm,abm,e)- 1
o . - - - i
2 ! ‘i
62, (bm,abm,e) = MS(R) ~ |
62, (ab) = [MS(CI) - MS (R} 1/n! |
. | - |
- L] l
?I*(“,aﬂ) - -Dd—sl!“(S)./Ei . « . L4 ;
i - ' ) ‘ - . . . ) i
.. 2 — - ! 'o LI ' !
= 61*.(a)'.— LMs (C) gd_S_(S)J/gigi . |
2 ’ ° |
— - 1t

61* (b) = [MS(1) MS(CI)1/nin; ,1
T -~ "
- ' : . 1
P ﬂ
Greek letters and e indicate random effects, unitalicized ) '1
i

Latin letters 1ndlcate fixed effects.
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